Small scale pumped storage and Flywheel Storage
For pumped storage, the project aimed to use the water tower at Transfo that served the former power station site. The aim was to pump water up to the storage tank and then use this stored resource for short term “bursts” of electricity production (less than 15 minutes) at peak times.
For flywheel storage, this was a very innovative concept. Excess electricity would be used to “spin” a large, low resistance flywheel when there was excess capacity. When demand for electricity increased, the stored rotational energy of the flywheel would drive a generator that would help meet this increase in demand.
Both of these elements of the project were scheduled to be delivered during what became to be the COVID-19 pandemic. The team found it impossible, despite repeated tendering, to attract any successful bids to deliver and commission the equipment associated with these technologies. For this reason, and given the impending completion date for the project, it was decided to exclude these elements from the programme at this time. It is still the intention to implement them in the future, perhaps through a collaborative research project with a University. (e.g. funded by Horizon Europe).
Second life battery storage
Second life batteries are used to store excess electrical energy when production levels are high on site. These are housed in a dedicated facility adjacent to their main points of use. This aspect of the project has proceeded as planned and the batteries have been acquired. Currently, they are in the process of being installed and their control systems (EMS) commissioned.
This aspect of the project was comparatively straightforward as the supply chain for second life batteries exists (three out of five tenders offered second life batteries) and there is a support infrastructure in place within the market to extract, test, recommission and maintain these units.
Steel structure for carpark
There is one significant Solar PV array on site positioned on the roof of a newly constructed car park that will have EV charging points. It was proposed that the steel superstructure from a derelict building would be extracted and reused as the superstructure for the new car park.
The building from which this steel structure was to be extracted was chosen specifically due to its proximity to the site to minimise transportation. It was inspected when designing the project and the structure was deemed to be suitable.
However, there were problems when it came to demolishing the building, and in particular extracting the steel superstructure intact. Specifically, the superstructure (over 100 years old) was constructed in a way that was not designed to be removed, let alone dismantled - it was not designed with circularity in mind. Consequently, attempts to remove it without damage proved impossible and further investigations indicated that it could not be removed without causing substantial damage to the structure - thus rendering it unusable at Transfo.
It was decided therefore to purchase a new steel structure for the car park, but one that would be designed for disassembly and reuse should that be required in the future. This was also cheaper than reusing the existing superstructure.